IMAGE CAPTURE
AND FACIAL | Abdullah Faisal Chaudhry
SEGMENTATION

ABSTRACT

This program is a python-written code which consists of various functions, libraries and
modules. The purpose of the code is to capture live images from a webcam, process
the captured images via a pre-trained neural network, and perform facial segmentation
on said images. The outputted images are then further cropped and resized acording
to arbitrary specifications, before being inputted into a circular buffer, which is used to
regulate memory usage on the host machine. Any other secondary program may then
request an image for use from the circular buffer. Upon request, this program will also
then dequeue the requested image and assign it to a temporary holding variable,
available for the secondary program to utilize. This sequence of actions may be

repeated an unlimited number of times, or as many times as required.

MODULES & LIBRARIES

OpenCV: OpenCVis a library of programming functions mainly aimed at real-time computer vision.
Used in the application of this program to capture live images from webcam of computer.

MediaPipe: MediaPipe is a pre-trained, ultrafast face detection solution that comes with 6
landmarks and multi-face support. It is based on BlazeFace, a lightweight and well-performing face
detector tailored for mobile GPU inference. The detector’s real-time performance enables it to be
applied to any live viewfinder experience that requires an accurate facial region of interest as an
input for other task-specific models, such face region segmentation.

OS: The OS module provides a quick and portable method to utilizing system dependant
functionality. In the application of this program, the module is used to define file paths and specify

directory changes.

Time: This python module provides various basic time related functions. In the application of this
program, the module is used to regulate the circular buffer enqueuement.

SEGMENT 1:
DEFINING GLOBAL
VARIABLE®S

iter = 0
Y =20
H=20
X=20
W=20

capacity = 119
timcap = 1

In this segment of the code, the global variables,
required for the standard operation of the rest of the
code, are initialized and defined.

iter - corresponds to the iteration of the while loop
performing facial segmentation.

Y, H, X, W - correspond to numerical values of X, Y
positions of facial segmentation bounding box. H, W

correspond to height and width of bounding box.

capacity - corresponds to variable capacity of circular
buffer holding processed images.

timcap - corresponds to flag variable used in the
operation of buffer enqueuement regulation.

S E G |§ /] E |-\ | T 2 . class circularQueue:
' def __init__ (self, capacity):

self.capacity = capacity

D E F :[N I N G self.queue = [Nonel * capacity

CIRCULAR BUFFER)

def Enqueue(self, item):
if self.size == self.capacity:
print("Error : Queue is Full")
else:
self.tail = (self.tail + 1) % self.capacity

The structure of the circular buffer functionality Selbicn [RUEEE el = S
.) . . self.size = self.size + 1
is defined in this segment of the code.

Il
(S

def Dequeue(self):

The initiation function (__init__) specifies the if self.size ==
capacity of the buffer, as well as the starting print ("Error : Queue is Empty")
ang g g return

positions of the read and write pointers. .

. . tmp = self.queue[self.head]
The Enqueue clale Dequeue functions speafy self.head = (self.head + 1) % self.capacity
how an image is to enter and exit the circular self.size = self.size - 1
buffer upon request and the subsequent return tmp
actions of the buffer. def display(self):

if self.size == 0:

For debugging or admin purposes, the display print ("Queue is Empty \n")
function is able to print the active/live capacity BlEEE

. . index = self.head

of the buffer during operation.

for i in range(self.size):
print(self.queue[index])
index = (index + 1) % self.capacity

SEGMENT 3:
IMAGE CAPTURE
INITIATION

with mp_face_detection.FaceDetection(
model_selection=0, min_detection_confidence=0.5) as face_detection:
while cap.isOpened():

In this segment of the program, the facial if timcap == 1:

segmentation model is initiated. The start = time.time()
confidence parameter of the model is elif timcap == 0:
configured here, as well as the parameter start=start
: : , i = cap. read
which controls the focus distance of the S R v
face detection model. print("Ignoring empty camera frame.")
The while loop for the continuous operation I —

of the program is also initiated.

In the initial few lines under the while loop,
the timcap flag is checked by an if-elif
statement, which is used to regulate the
frequency at which an image is enqueued
into the circular buffer.

SEGMENT 4:
FACIAL
SEGMENTATION

Before the image is segmented based on
the facial features, the image must be
converted from the native RGB color mode
to BGR color mode, as the model used was
trained using the BGR color mode. This is

done by the OpenCV cv2.cvtColor function.

Once the image has been processed, it is
converted back to the RGB color mode to
display on the host machine.

The bounding box based the on the facial
segmentation data is then drawn on the
image using the
mp_drawing.draw_detection function.

image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

results = face_detection.process(image)

image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

if results.detections:
print("hello faisal \n")
if noface_flag == 1:
cv2.destroyWindow("empty image'")
noface_flag = 0
for detection in results.detections:
mp_drawing.draw_detection(image, detection)

SEGMENT 5:
IMAGE CROP

This segment of the code is responsible for
obtaining the X, Y positions and the Height
and Width of the segmentation bounding
box.

These values are then normalized based on
the resolution of the host camera.

It is important to note that certain boundary
conditions are applied to these values to
ensure that the cropping operation does
not encounter logic errors in the event that
a face leaves or enters the frame during
operation.

location_data = detection.location_data

if location_data.format == location_data.RELATIVE_BOUNDING_BOX:
bb = location_data.relative_bounding_box
bb_box = [bb.xmin, bb.ymin, bb.width, bb.height]

= int(720%bb_box[1])
= int(720%bb_box[3])
= int(1280xbb_box[0])
= int(1280xbb_box[2])

= X T <
I

if Y < 0:
Y =20
if Y > 720:
Y = 720
if H < 0:

if H > 720:

if X < 0:

if X > 1280:
X = 1280

if W < 0:

if W > 1280:

if elapstime > 0.5:

CULAR BUF) e
CIRCULAR BUFFER oty i
ENQUE/DEQUE iter += 1

if iter < 10:
continue
else:

outimg = Q.Dequeue()
The final segment of this program pertains to
the enqueuement and dequeuement of the
cropped images into the circular buffer upon
request.

It should be noted that the frequency of the

write action is controlled by the elapstime continue
variable, which currently intends to control the else: '
write frequency to 2 images per second. timcap = 0

continue
Upon request by any secondary program, the

buffer will read the respective image and then
assign it to a temporary holding variable called
outimg, from which the secondary program will
be able to use the image.

else:
print("hello joseph\n")
cv2.imshow("empty image", image)
170
noface_flag = 1
continue

